- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Kubischta, Eric (4)
-
Teixeira, Ian (4)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In a recent paper, we defined a type of weighted unitary design called a twisted unitary 1-group and showed that such a design automatically induced error-detecting quantum codes. We also showed that twisted unitary 1-groups correspond to irreducible products of characters thereby reducing the problem of code-finding to a computation in the character theory of finite groups. Using a combination of GAP computations and results from the mathematics literature on irreducible products of characters, we identify many new non-trivial quantum codes with unusual transversal gates. Transversal gates are of significant interest to the quantum information community for their central role in fault tolerant quantum computing. Most unitary$$\text {t}$$ -designs have never been realized as the transversal gate group of a quantum code. We, for the first time, find nontrivial quantum codes realizing nearly every finite group which is a unitary 2-design or better as the transversal gate group of some error-detecting quantum code.more » « less
-
Kubischta, Eric; Teixeira, Ian (, IEEE Transactions on Information Theory)Free, publicly-accessible full text available January 1, 2026
-
Kubischta, Eric; Teixeira, Ian (, Physical Review Letters)
-
Kubischta, Eric; Teixeira, Ian (, Physical Review Letters)Recently, an algorithm has been constructed that shows that the binary icosahedral group 2I together with a T-like gate forms the most efficient single-qubit universal gate set. To carry out the algorithm fault tolerantly requires a code that implements 2I transversally. However, no such code has ever been demonstrated in the literature. We fill this void by constructing a family of distance d ΒΌ 3 codes that all implement 2I transversally. A surprising feature of this family is that the codes can be deduced entirely from symmetry considerations that only 2I affords.more » « less
An official website of the United States government
